QUALIDADE DA ÁGUA E ESTADO TRÔFICO DAS LAGOAS URBANAS DE SALVADOR-BA
GOVERNO DO ESTADO DA BAHIA
Rui Costa

SECRETARIA DE MEIO AMBIENTE – SEMA
Eugênio Spengler

INSTITUTO DE MEIO AMBIENTE E RECURSOS HÍDRICOS (INEMA)
DIRETORIA GERAL (DIREG)
Márcia Cristina Telles de Araújo Guedes

DIRETORIA DE FISCALIZAÇÃO E MONITORAMENTO AMBIENTAL
Lúcia de Fátima Carvalho Gonçalves

COORDENAÇÃO DE MONITORAMENTO DE RECURSOS AMBIENTAIS E HIDRÍCOS – COMON
Eduardo Farias Topázio

EQUIPE TÉCNICA

Ailton dos Santos Junior
Especialista em Meio Ambiente e Recursos Hídricos

Aiane Catarina Fernandes Faria
Colaboradora/Engenheira Ambiental

Antonio Gonçalves dos Santos
Técnico nível médio

Thiago Arrais de Carvalho Andrade
Estagiário de Engenharia Ambiental e Sanitária

Sauara Azevedo Santos
Estagiária de Biologia
Sumário
1. INTRODUÇÃO ... 10
1.1. OBJETIVO DO ESTUDO ... 11
1.1.1. Objetivos específicos ... 11
2. EQUIPE TÉCNICA ... 11
3. ÁREA DE ESTUDO .. 12
 Lagoa do Posto 1 ... 8
 Lagoa do CAB II .. 9
 Lagoa do CAB I .. 10
 Lagoa da CHESF ... 11
 Lagoa Jorge Amado .. 13
 Lagoa Alphaville ... 14
 Lagoa Shopping Paralela .. 15
 Lagoa FTC .. 16
 Lagoa do Vale Encantado ... 17
 Lagoa Parque Tecnológico ... 18
 Lagoa Orlando Gomes ... 19
 Lagoa Costa Verde ... 20
 Lagoa de Pituaçu ... 21
 Lagoa do Paraíso ... 23
 Lagoa dos Frades ... 24
 Lagoa dos Patos/Vela Branca .. 26
 Dique do Tororó .. 28
 Lagoa do Urubu .. 30
 Dique de Campinas ... 32
 Lagoa da Paixão ... 33
 Lagoa dos Macacos .. 35
 Barragem de Ipitanga I ... 36
 Lagoa do Flamengo .. 37
 Lagoa da Vitória ... 39
 Lagoa Abaeté Catu .. 40
 Lagoa do Abaeté ... 42
 Represa do Cascão ... 44
4. METODOLOGIA .. 45
4.1. DESCritivo da COLETA ... 45
5. ANÁLISE DOS RESULTADOS ... 46
5.1. AVALIAÇÃO DOS PARÂMETROS SEGUNDO A RESOLUÇÃO CONAMA 357/2005. 46
5.2. PROFIL VERTICAL DO OD .. 57
5.3. FITOPLÂNCTON .. 62
5.4. AVALIAÇÃO DOS ÍNDICES ... 65
5.4.1. Índice de Qualidade da Água – IQA .. 65
5.4.2. Índice de Estado Trófico – IET

6. CONCLUSÃO

7. REFERÊNCIAS
1. INTRODUÇÃO

A ocupação de áreas urbanas de forma desordenada e sem infraestrutura no que condiz ao saneamento é a principal causa da degradação dos recursos hídricos. Nos ecossistemas aquáticos, o impacto de um poluente será tão maior quanto for sua concentração e a capacidade do compartimento que o recebe em degradá-lo. Além disso, na maioria dos casos ocorrem alterações urbanísticas que levam à diminuição da sua área original, e alteração do escoamento superficial (LIMA et al., 2014).

Dentre os diferentes tipos de corpos d’água, as lagoas sofrem um grande impacto ambiental na qualidade das suas águas, por estarem situadas em área urbanizada, recebendo os resíduos produzidos pelas atividades humanas realizadas em seu entorno (SOFFIATI, 1998).

Para determinar a qualidade das águas, atualmente no Brasil, utiliza-se a Resolução nº 357 do Conselho Nacional do Meio Ambiente - CONAMA. Esta resolução estabelece valores padrões para diferentes variáveis hídricas que nos permite enquadrar os corpos de águas em diferentes classes (BRASIL, 2005).

O uso de índices de qualidade da água surge da necessidade de sintetizar a informação sobre vários parâmetros físico-químicos, visando informar a população e orientar as ações de planejamento, gestão da qualidade da água e facilitam a comunicação com o público leigo, já que permitem resumir várias informações em um número único. Dois importantes índices são o IQA e o IET. Ambos são utilizados como indicador da qualidade da água de um corpo d’água, não sendo usados para atendimento às exigências da legislação ambiental, mas subsidiando o diagnóstico da qualidade das águas doces para seus diversos usos (MACHADO, 2004). O primeiro índice foi adaptado pela Companhia de Tecnologia de Saneamento Ambiental – CETESB e agrupa nove variáveis hídricas em apenas um valor numérico, a partir deste valor, se classifica a água em cinco categorias, com fins de abastecimento humano: ótima, boa, regular, ruim e péssima (CETESB, 2008). O segundo índice foi desenvolvido Carlson (1977) e modificado por Lamparelli (2004), esse determina o estado trófico dos corpos de águas a partir de duas variáveis: fósforo total e clorofila-a. O estado trófico, segundo IET, pode variar entre
ultraoligotrófico, oligotrófico, mesotrófico, eutrófico, supereutrófico e hipereutrófico (LAMPARELLI, 2004).

Ao longo dos anos os sistemas lacustres das cidades brasileiras vêm sendo alvo do processo de degradação ambiental, decorrente da ausência de propostas de planejamento urbano sustentável, das interferências das ações antrópicas aliadas à expressiva expansão urbana, manejo inadequado do uso do solo, ausência de uma legislação expressiva e a falta de conhecimento da sociedade em relação às questões ambientais.

Com a problemática em questão, justifica-se a necessidade da realização de estudos e pesquisas que venham contribuir com diagnósticos científicos, informando a sociedade à realidade existente nas lagoas urbanas que se encontram inseridas na cidade de Salvador.

1.1. OBJETIVO DO ESTUDO

Diagnosticar a qualidade ambiental das águas e o estado trófico das lagoas e represas urbanas do município de Salvador.

1.1.1. Objetivos específicos

- Determinação da qualidade das águas tendo como referência o Valor Máximo Permitido - VMP da Resolução CONAMA 357/05;
- Determinação do Índice de Qualidade da Água – IQA,
- Determinação do Índice de Estado Trófico – IET.

2. EQUIPE TÉCNICA

- Ailton dos Santos Junior – Biólogo, Especialista em Meio Ambiente e Recursos Hídricos;
- Aiane Catarina Fernandes Faria – Colaboradora, Engenheira Ambiental;
- Antonio Gonçalves dos Santos – Técnico nível médio;
Thiago Arrais de Carvalho Andrade – Estagiário de Engenharia Ambiental e Sanitária;
Sauara Azevedo Santos – Estagiária de Biologia.

3. ÁREA DE ESTUDO

O presente trabalho foi realizado em 30 (trinta) lagoas urbanas localizadas no município de Salvador – BA, que por sua vez encontra-se inserido na Região de Planejamento de Gestão das águas - RPGA Recôncavo Norte, na região hidrográfica do Atlântico Leste. Os pontos de coleta foram distribuídos conforme mostra a Figura 2.
Figura 2: Localização dos pontos da rede de amostragem das lagoas de Salvador.

Fonte: Adaptado pelo INEMA, 2015
Lagoa do Posto 1: Situada entre as vias de rolamento da Av. Luis Viana Filho (Paralela), próxima da Fundação Bahiana de Engenharia - FBE e do antigo Posto 1 (posto de combustíveis). Por não saber o nome específico da lagoa, nomeou-se de Lagoa do Posto 1, devido ao ponto de referência (Figura 3).

![Figura 3: Localização da Lagoa do Posto 1.](image)

Fonte: Adaptado Google Earth, 2015.

Nesse ponto, foi verificada a existência de alguns empreendimentos em seu entorno, como o órgão federal de Advocacia Geral, a Faculdade Bahia de Engenharia - FBE, alguns empreendimentos imobiliários e as vias de passagem de meios de transportes. Antigamente além desses empreendimentos, havia um posto de combustíveis conhecido como, Posto 1. Atualmente essa lagoa está sendo aterrada, em virtude das obras do sistema metroviário. No dia da coleta, a lagoa ainda não havia sido totalmente aterrada, o que possibilitou a coleta. O ponto de coleta está localizado nas coordenadas 12°58'2.93" S e 38°26'19.96" W (Figuras 04 e 05).
Lagoa do CAB II: Situada na Paralela, na Av. 2 do Centro Administrativo da Bahia - CAB, entre a Secretaria do Planejamento do Estado da Bahia - SEPLAN e o Tribunal Regional Eleitoral – TRE. Foi nomeada de lagoa do CAB II, por causa da sua localização (Figura 6).

Figura 6: Localização da Lagoa do CAB II

Fonte: Adaptado Google Earth, 2015.

Essa lagoa encontra-se em um complexo público, onde funciona parte considerável das secretarias e órgãos do Governo do estado da Bahia. Suas margens possuem remanescentes de mata atlântica, às margens das vias de passagem de transportes da Av. Luís Viana Filho (Paralela). Nesse ponto, foi verificada a existência de conduto de escoamento de água pluvial, artefatos místicos e disposição de resíduos sólidos em seu entorno. O ponto de coleta
está localizado nas coordenadas 12°57'8.87" S e 38°25'39.42" W (Figuras 07 e 08).

Figura 7: Lagoa do CAB II.

Fonte: Faria, 2015.

Figura 8: Conduto de escoamento de água pluvial e resíduos dispostos no entorno do manancial.

Fonte: Santos, 2015.

Lagoa do CAB I: Situada na entrada da Av. 1, do Centro Administrativo da Bahia – CAB, acesso a Assembleia Legislativa da Bahia. Foi nomeada de lagoa do CAB I, por causa da sua localização (Figura 9).
Essa lagoa também se encontra em um complexo público. Suas margens possuem remanescentes de mata atlântica, às margens das vias de passagem de transportes da Av. Luís Viana Filho (Paralela). Nesse ponto, foi verificada a existência de macrófitas flutuantes, artefatos místicos e disposição de resíduos sólidos em seu entorno. Além disso, a mesma estava quase seca no dia da coleta. O ponto de coleta está localizado nas coordenadas 12°56'52.10"S e 38°25'27.09" W (Figura 10).

Lagoa da CHESF: Situada na Sede Administrativa da Companhia Hidrelétrica do São Francisco – CHESF, na margem direita da via Av. Luís Viana Filho
(Paralela), sentido Iguatemi. Nomeada como Lagoa da Chesf por estar situada na Chesf (Figura 11).

Figura 11: Localização da Lagoa da Chesf.

![Figura 11: Localização da Lagoa da Chesf.](image1)

Fonte: Adaptado Google Earth, 2015.

Figura 12: Lagoa das Chesf

![Figura 12: Lagoa das Chesf](image2)

Fonte: Faria, 2015.
Lagoa Jorge Amado: Localizada entre as vias de rolamento da Av. Luis Viana Filho (Paralela), próxima ao Centro Universitário Jorge Amado – Unijorge. Nomeada como Lagoa Jorge Amado por causa da sua localização (Figura 13).

Figura 13: Localização da Lagoa Jorge Amado

Fonte: Adaptado Google Earth, 2015.

Nesse ponto, verificou-se a presença de conduto de escoamento de água pluvial, alguns focos de resíduos sólidos dispostos inadequadamente. Vale ressaltar que no dia da coleta a água estava com a coloração esverdeada, mas sem odor. O ponto de coleta está localizado nas coordenadas 12°56’17.90” S e 38°24’32.10” W (Figura 14).

Figura 14: Lagoa Jorge Amado

Fonte: Santos, 2015.
Lagoa Alphaville: Situada na margem direita da Avenida Paralela – sentido Lauro de Freitas, próximo ao condomínio Alphaville. Nomeou-se como Lagoa de Alphaville devido a sua localização (Figura 15).

Figura 15: Localização da lagoa Alphaville.

![Localização da lagoa Alphaville](image1)

Fonte: Adaptado Google Earth, 2015.

Nesse ponto, verificou-se a presença de remanescentes de mata atlântica, condomínios residenciais e via de meio de transporte no seu entorno. O ponto de amostragem escolhido está localizado nas coordenadas $12°56'17.80''$ S e $38°24'6.70''$ W (Figura 16).

Figura 16: Lagoa Alphaville

![Lagoa Alphaville](image2)

Fonte: Faria, 2015.
Lagoa Shopping Paralela: Situada à margem direita da Av. Luis Viana Filho (Paralela), sentido Iguatemi, próximo ao Shopping Paralela. Nomeou-se como Lagoa Shopping Paralela devido a sua proximidade. (Figura 17).

![Figura 17: Localização da lagoa Shopping Paralela.](image1)

Fonte: Adaptado Google Earth, 2015.

Nesse ponto foi relatada a presença de resíduos sólidos dispostos de forma inadequada, artefatos místicos, algumas macrófitas, como *Nymphaea*. O ponto de amostragem escolhido está localizado nas coordenadas 12°55'58.80" S e 38°23'39.14" W (Figuras 18 e 19).

![Figura 18: Lagoa Shopping Paralela.](image2)

Fonte: Faria, 2015.
Lagoa FTC: Situada na margem esquerda da Av. Luis Viana Filho (Paralela) sentido Iguatemi- próxima a Faculdade de Tecnologia e Ciência - FTC. Nomeou-se como lagoa FTC, por causa da sua proximidade com a Faculdade supracitada (Figura 20).

Nesse ponto, verificou-se a presença de uma obra, alguns resíduos sólidos dispostos de forma inadequada, remanescente de mata atlântica, além de condutos de águas pluviais no seu entorno. O ponto de coleta está localizado nas coordenadas 12°56'0.10” S e 38°23'29.90” W (Figuras 21 e 22).
Essa lagoa fica próxima a condomínios residenciais, e no antigo Vale Encantado. Foi observada a presença de macrófitas, artefatos místicos no seu entorno e uma obra de empreendimento residencial (Figura 24).

Lagoa Parque Tecnológico: Situada na margem direita da Av. Luis Viana (Paralela) sentido Iguatemi, nas proximidades do Parque Tecnológico da Bahia, ao lado do antigo Parque Aquático Wet'n Wild. Nomeou-se como Lagoa Parque Tecnológico, devido a sua localização (Figura 25).
Nessa lagoa, verificou-se a presença de remanescente de mata atlântica, artefatos místicos, algumas macrófitas, conduto de escoamento de água pluvial, resíduos sólidos e foco de assoreamento. O ponto de coleta está localizado nas coordenadas 12°55’35.62” S e 38°23’12.35”W (Figura 26).

Lagoa Orlando Gomes: Situada na margem direita na Av. Orlando Gomes, próxima ao Condomínio Vila Tropical. Nomeou-se como Lagoa Orlando Gomes, devido a sua localização (Figura 27).
Nessa lagoa, verificou-se a presença de remanescente de mata atlântica e resíduos sólidos dispostos de forma inadequada. O ponto de coleta está localizado nas coordenadas 12°55'53.74" S e 38°23'2.53" W (Figura 28).

Lagoa Costa Verde: Situada dentro do Condomínio Costa Verde, localizado na margem direita da Av. Orlando Gomes – sentido orla. Foi nomeada de Lagoa Costa Verde, devido a sua localização (Figura 29).
Figura 29: Localização da lagoa Costa Verde.

Fonte: Adaptado Google Earth, 2015.

O ponto de coleta está localizado nas coordenadas 12°56'47.00" S e 38°23'12.07" W (Figura 30).

Figura 30: Lagoa Costa Verde.

Fonte: Santos, 2015.

Lagoa de Pituaçu: Localizada no bairro de Pituaçu, mais precisamente no Parque Metropolitano de Pituaçu - faz parte da Bacia Hidrográfica do Rio das Pedras (e Pituaçu), foi originada de um barramento do rio Pituaçu feito em 1906. A lagoa tem 4 km de extensão e 200 mil metros quadrados de espelho d’água. O Parque foi criado pelo Decreto Estadual nº 23.666 de 4 de setembro 1973, com 660 hectares (Figura 31).
Nessa lagoa foram escolhidos dois pontos: um próximo da entrada e o outro próximo ao Km 2 da ciclovia. Nessa lagoa, verificou-se a presença de ocupação desordenada consolidada nos vales e encostas, alguns empreendimentos imobiliários, construções de casas, edifícios, condomínios, promovidos pelas especulações imobiliárias, remanescente de mata atlântica e restinga no seu entorno. O ponto de coleta 1 está localizado nas coordenadas 12°57'59.94" S e 38°24'48.98" W e o ponto de coleta 2 encontra-se nas coordenadas 12°57'41.83" e 38°24'46.16" W (Figuras 32 e 33).

Figura 32: Lagoa de Pituaçu no ponto 01.

Fonte: Faria, 2015.
Lagoa do Paraíso: Situada no bairro do Doron. Esta lagoa drena para o rio Saboeiro, que por sua vez, se encontra inserido na bacia Rio das Pedras e Pituaçu (Figura 34).

Essa lagoa é utilizada pela população para pesca. No entorno foi verificada a existência de condomínios residenciais, resíduos sólidos dispostos, ocupação desordenada, empreendimentos comerciais, como, oficinas de automóveis. A lagoa deságua em um pequeno córrego bastante poluído. A coloração da água
no dia da coleta estava bem esverdeada. O ponto de coleta está localizado
nas coordenadas 12°57'45.02" S e 38°26'21.45" W (Figuras 35 e 36).

Figura 35: Lagoa do Paraiso

[Image]

Fonte: Faria, 2015.

Figura 36: Resíduos de entulho encontrados no entorno da lagoa.

[Image]

Fonte: Faria, 2015.

Lagoa dos Frades: situada na Avenida Professor Manoel Ribeiro no bairro do Stiep. Originalmente a lagoa dos Frades estava completamente inserida em
dunas. Com a expansão do mercado imobiliário a região foi gradualmente
transformada (Figura 37).
Figura 37: Localização da lagoa dos Frades.

Este ponto encontra-se em uma área que atualmente é uma praça de lazer, completamente envolvida por edificações e empreendimentos comerciais, como, posto de combustível, centro de convenções da Bahia e hotel. Verificou-se no entorno a presença de conduto de drenagem pluvial, a ausência de mata ciliar e a presença apenas de plantas ornamentais como bambuzal, amêndoeiras, flamboyant, entre outras e alguns resíduos dispostos de forma inadequada. Foi observada também a presença de vestígios de óleo no espelho d’água. O ponto de coleta está situado nas coordenadas 12°58’53.9’’ S e 38°26’31.6’’ W (Figuras 38, 39 e 40).

Figura 38: Lagoa dos Frades.

Fonte: Santos, 2015.
Figura 39: Conduto com efluentes “in natura”.

Fonte: Faria, 2015.

Figura 40: vestígios de óleo no espelho d’água

Fonte: Faria, 2015.

Lagoa dos Patos/Vela Branca: Situada entre as ruas Piauí e Maranhão, no bairro da Pituba (Figura 41).
Essa lagoa é uma área de lazer da população do entorno, fica em uma praça e é cercada. Foi verificada a presença de animais, como, patos, conduto de drenagem de água pluvial, condomínios residenciais e ausência de mata ciliar. O ponto de coleta está situado nas coordenadas 13°00'21.4" S e 38º27'57.1" W (Figuras 42, 43 e 44).

Fonte: Faria, 2015.
Figura 43: Patos encontrados no entorno da lagoa.

Fonte: Faria, 2015.

Figura 44: Conduto de água pluvial.

Fonte: Faria, 2015.

Dique do Tororó: Situado na Av. Vasco da Gama, no bairro do Tororó. O dique faz parte da Bacia Hidrográfica do Rio Lucaí. Nesse ambiente lêntico foram escolhidos dois pontos de coleta: o ponto 1 encontra-se próximo ao estádio Fonte Nova e do restaurante Cheiro de Pizza (Figura 45). O ponto 2 encontra-se próximo ao acesso da centenário para a Vasco da Gama (Figura 46).
O dique já foi um lago natural que recebia as águas de pequenos rios, mas uma parte significativa da sua área original foi aterrada (SANTOS et al., 2010). Ocupa atualmente uma área de aproximadamente 110.000m² e suas margens foram urbanizadas, se tornando um importante local de lazer para a população de Salvador. O ponto de coleta 01 está situado nas coordenadas 12º58’55” S e 38º30’14” W e o ponto de coleta 02, encontra-se nas coordenadas 12º59’19.64”S 38º30’27.27” W (Figuras 46, 47, 48 e 49).

Figura 46: Localização do ponto 01 e 02.

Fonte: Adaptado Google Earth, 2015.
Figura 47: dique do Tororó.

Fonte: Andrade, 2015.

Figura 48: dique do tororo.

Fonte: Faria, 2015.

Figura 49: Conduto de água pluvial encontrado.

Fonte: Faria, 2015.

Lagoa do Urubu: Situada entre a Av. Cardeal Avelar Brandão Villela e a Rua Tailândia, no bairro Jardim Santo Inácio (Figura 50).
Nesse ponto foi verificado, no entorno da lagoa a existência de alguns empreendimentos comerciais, como, oficina de carro, Brasilgás e próximo também a um posto de gasolina. Além disso, foram encontrados resíduos sólidos dispostos de forma inadequada no corpo d’água e ausência de vegetação original. O ponto de coleta está localizado nas coordenadas 12°55’09.18”S 38°27’35.44” W (Figuras 51 e 52).
Figura 52: Resíduos sólidos encontrados no corpo d'água.

Fonte: Faria, 2015.

Dique de Campinas: Situado na Rua Oscar Duque de Almeida, no bairro de Campinas. (Figura 53).

Figura 53: Localização do Dique de Campinas

Fonte: Adaptado Google Earth, 2015.

O dique de Campinas é uma das nascentes do rio Camarajipe. É muito utilizado pela população para lazer e pesca. Nesse ponto foram verificadas a
existência de ocupação desordenada, resíduos e ausência de vegetação original no seu entorno. Além disso, foi observada a presença de esgotos *in natura*. O ponto de coleta está localizado nas coordenadas 12°54’54.97” S e 38°28’20.56” W (Figuras 54 e 55).

Figura 54: Dique de Campinas

![Dique de Campinas](image1)

Fonte: Santos, 2015.

Figura 55: Esgoto *in natura* no entorno do dique de Campinas.

![Esgoto *in natura*](image2)

Fonte: Faria, 2015.

Lagoa da Paixão: Ponto situado no bairro de Fazenda Coutos, na rua Morada da lagoa e faz parte da Bacia do Cobre (Figura 56).
A Lagoa da Paixão é nascente do Rio do Cobre. Nesse ponto verificou-se a presença de remanescente de mata atlântica em seu entorno, a presença de ocupação desordenada por uma comunidade de baixa renda e resíduos sólidos dispostos de forma inadequada. Vale salientar que foi realizada uma ação de revitalização para a retirada de grande parte das macrófitas flutuantes que colonizavam a lagoa. O ponto de coleta está localizado nas coordenadas 12°51'09.62"S e 38°26'54.17"W (Figuras 57 e 58).
Figura 58: Resíduos encontrados no entorno da lagoa da Paixão.

Fonte: Faria, 2015.

Lagoa dos Macacos: Ponto situado dentro de uma área militar da Marinha, no bairro de Paripe. O mesmo faz parte da bacia do Rio dos Macacos (Figura 59).

Figura 59: Localização da Barragem dos Macacos

Fonte: Adaptado Google Earth, 2015.

A Barragem dos Macacos encontra-se inserida na Vila da Base Naval de Aratu. A Marinha promoveu a construção da mesma, na área das fazendas Meireles e Macacos entre as décadas de 50 e 60, para abastecimento da Base Naval de Aratu (SANTOS, 2013). Na região onde a represa se encontra, verificou-se a presença de remanescente de Mata Atlântica em seu entorno. (Figura 60).
Barragem de Ipitanga I: Inserida em uma área da Empresa Baiana de Água e Saneamento S.A- EMBASA e na APA - Joanes/Ipitanga, situada próxima a Estrada da Barragem de Ipitanga, no bairro de Cassange (Figura 61).

A Represa de Ipitanga I, integra-se ao sistema de barragens Joanes-Ipitanga. A represa além da função de complementar o abastecimento de água em Salvador, tem o papel de regularizar as águas do rio Ipitanga e de alimentar as estações de tratamento do Parque da Bolandeira. Seu reservatório tem um volume total de 6.000.000m³, sendo que 5.800.000m³ são considerados como
volume útil. As águas captadas na barragem são enviadas para a Estação de Tratamento de Água da Bolandeira. Na região onde a represa se encontra, verificou-se a presença de remanescente de Mata Atlântica. O ponto de amostragem está localizado nas coordenadas 12°53’37.44” S e 38°23’7.62” W (Figura 62).

Figura 62: Barragem de Ipitanga I.

Fonte: Faria, 2015.

Lagoa do Flamengo: Situada na Alameda do Cabo Frio, no Loteamento Praia do Flamengo. Segundo (SANTOS et al., 2010), essa lagoa faz parte da Bacia de Drenagem Natural de Stella Maris. Nomeada como Lagoa do Flamengo por causa da sua localização (Figura 63).

Figura 63: Localização da Lagoa do Flamengo.

Fonte: Adaptado Google Earth, 2015.
Nesse ponto foi verificada a presença de condomínios residenciais em todo seu entorno, empreendimentos comerciais, condutos de drenagem de águas pluviais e macrófitas. O ponto de coleta da lagoa do Flamengo localiza-se dentro de um condomínio de luxo nas coordenadas 12°55’13.97” S e 38°18’57.06” W (Figuras 64 e 65).

Figura 64: Lagoa do Flamengo.

![Lagoa do Flamengo](image1)

Fonte: Santos, 2015.

Figura 65: Macrófitas encontradas no entorno da lagoa.

![Macrófitas na lagoa](image2)

Fonte: Faria, 2015.

Figura 66: Localização da Lagoa da Vitória.

Fonte: Adaptado Google Earth, 2015.

Dentro do parque existem sete lagoas perenes e oito intermitentes. Foi escolhida a lagoa da Vitória, por ser uma lagoa perene e de fácil acesso. O acesso se dá pela entrada principal da UNIDUNAS a cerca de 200m do prédio da administração. Esse ponto encontra-se em uma área totalmente preservada, mesmo estando próximo ao aeroporto e condomínios residenciais. Nessa lagoa verificou-se a presença de algumas macrófitas, como junco e ninfeia. O ponto de coleta está localizado nas coordenadas 12º55’03” S e 38º19’07” W (Figuras 67 e 68).
Figura 67: Lagoa da Vitória.

Fonte: Santos, 2015.

Figura 68: Macrófitas no espelho d'água da lagoa.

Fonte: Santos, 2015.

Lagoa Abaeté Catu: Acesso pela Alameda das Praias. Parte integrante da APA das lagoas e Dunas do Abaeté e no Parque Municipal com o mesmo nome, faz parte da Bacia de Drenagem Natural de Stella Maris (Figura 69).
Figura 69: Localização da Lagoa Abaeté Catu.

Fonte: Adaptado Google Earth, 2015

Nesse ponto foi verificada a existência de mata ciliar e de dunas em bom estado de conservação (Figura 70).

Figura 70: Lagoa Abaeté Catu.

Fonte: Faria, 2015.
Lagoa do Abaeté: Situada no bairro de Itapuã, encontra-se inserida na Área de Proteção Ambiental - APA das lagoas e Dunas do Abaeté e no Parque Municipal com o mesmo nome, faz parte da Bacia de Drenagem Natural de Stella Maris e possui uma área de 1410 hectares (Figura 71).

Figura 71: Localização da lagoa Abaeté.

Fonte: Adaptado Google Earth, 2015.

Nessa lagoa foram escolhidos dois pontos de coleta: o ponto 1 encontra-se próximo a margem esquerda. Já o ponto 2 encontra-se na margem direita da lagoa (Figura 72). Vale salientar que no dia da coleta estava sendo feita a retirada de macrófitas no ponto 1 (Figuras 73, 74, 75 e 76).

Figura 72: Localização dos dois pontos de coleta escolhidos.

Fonte: Adaptado Google Earth, 2015.
Figura 73: Lagoa do Abaeté ponto 01.

Fonte: Santos, 2015.

Figura 74: Colonização de macrófitas no ponto 01.

Fonte: Faria, 2015.

Figura 75: Retirada das macrófitas no ponto 01.

Fonte: Santos, 2015.
Figura 76: Lagoa do Abaeté ponto 02.

Figura 77: Localização da represa do Cascão.

Represa do Cascão: Ponto situado na 19° Batalhão de Caçadores do Exército Brasileiro, no bairro do Cabula. Essa represa faz parte da bacia Rio Pedras e Pituaçu e é formada pelo barramento do rio Cascão (Figura 77).

A represa do Cascão encontra-se em uma área preservada pelo exército. Foi observada a presença de mata ciliar (Figura 78).
4. METODOLOGIA

4.1. DESCritivo da coleta

As coletas foram realizadas no período de 31 de agosto a 03 de setembro de 2015, obedecendo aos procedimentos descritos no “Guia Nacional de Coleta e Preservação de Amostras: Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos”, desenvolvido pela Agência Nacional das Águas - ANA em parceria com a CETESB (São Paulo, 2011).

Durante a coleta foram feitas medições in loco dos parâmetros: pH, temperatura, salinidade, condutividade, turbidez e Oxigênio Dissolvido (OD) na superfície, meio e fundo dos corpos d’água, com o auxílio de uma sonda multiparamétrica da marca YSI, modelo EXO 1 (Figura 60) e a transparência com o uso do disco de Secchi (Figura 61). Em laboratório foram analisados 12 (doze) parâmetros: Demanda Bioquímica de Oxigênio (DBO₅,20), nitrogênio total, nitrogênio amoniacal, nitrogênio nitrito, nitrogênio nitrato, nitrogênio total Kjeldahl, fósforo total, ortofosfato solúvel, sólidos totais, sólidos totais dissolvidos, clorofila a e coliformes termotolerantes.

Além dos parâmetros citados acima foram coletadas amostras de fitoplâncton nas lagoas de Pituaçu, dique do Tororó e Abaeté.
A coleta das amostras foi realizada pelos técnicos da Coordenação de Monitoramento dos Recursos Ambientais e Hídricos – COMON do Instituto do Meio Ambiente e Recursos Hídricos - INEMA e do Centro de Pesquisa e Desenvolvimento - CEPED, para onde as amostras foram encaminhadas.

Todas as coletas de amostras da matriz água superficial foram feitas a bordo de um bote inflável e foram coletadas entre 0 e 30 cm de profundidade do corpo d’água.

As análises das amostras foram realizadas com base nos métodos analíticos padronizados e apresentados pelo Standard Methods for the Examination of Water and Wastewater (SMEWW).

5. ANÁLISE DOS RESULTADOS

5.1. AVALIAÇÃO DOS PARÂMETROS SEGUNDO A RESOLUÇÃO CONAMA 357/2005.

Os resultados foram interpretados de acordo com a resolução CONAMA nº 357/2005, que estabelece as condições e padrões de qualidade das águas com limites individuais para cada substância em cada classe.

As águas dos ambientes lênticos avaliados nesse estudo foram classificadas como águas doces e enquadradas como Classe 2. Sendo assim, a matriz água em estudo, foi avaliada de acordo com as conformidades dos resultados encontrados em relação aos padrões para águas doces, Classe 2.

A Resolução CONAMA Nº 357/2005 não estabelece um valor limite para alguns parâmetros em águas doces, classe 2, como é o caso dos seguintes parâmetros: condutividade, coliformes termotolerantes, nitrogênio total, nitrogênio total kjeldahl, nitrogênio nitrito, ortofosfato solúvel, temperatura e sólidos totais. As Tabelas abaixo apresentam os resultados dos valores para parâmetros físico-químicos e biológicos analisados em cada corpo d’água.
Tabela 1: Resultados das amostras coletada nas lagoas de Salvador.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Padrões da Resolução CONAMA nº. 357/05</th>
<th>Unidade</th>
<th>Lagoa Alphaville</th>
<th>Lagoa FTC</th>
<th>Lagoa Orlando Gomes I</th>
<th>Lagoa Costa Verde</th>
<th>Lagoa Pituaçu 1</th>
<th>Lagoa Pituaçu 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiente</td>
<td>Lêntico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.Físico-químicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condutividade</td>
<td>µmhos/cm</td>
<td></td>
<td>170,8</td>
<td>97,8</td>
<td>172,1</td>
<td>244,8</td>
<td>420,4</td>
<td>419,7</td>
</tr>
<tr>
<td>Salinidade</td>
<td>%/oo</td>
<td></td>
<td>0,08</td>
<td>0,04</td>
<td>0,08</td>
<td>0,1</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Temperatura - campo</td>
<td>ºC</td>
<td></td>
<td>27,2</td>
<td>27,9</td>
<td>27,5</td>
<td>28,5</td>
<td>26,2</td>
<td>27</td>
</tr>
<tr>
<td>pH - campo</td>
<td>6,0 a 9,0</td>
<td></td>
<td>6,97</td>
<td>6,84</td>
<td>6,5</td>
<td>6,96</td>
<td>7,09</td>
<td>7,15</td>
</tr>
<tr>
<td>Turbidez</td>
<td>≤ 100,0 NTU</td>
<td></td>
<td>1,25</td>
<td>2,05</td>
<td>5,06</td>
<td>1,49</td>
<td>6,5</td>
<td>6,23</td>
</tr>
<tr>
<td>Sólidos dissolvidos totais</td>
<td>mg/L</td>
<td></td>
<td>101</td>
<td>50</td>
<td>120</td>
<td>130</td>
<td>212</td>
<td>212</td>
</tr>
<tr>
<td>Sólidos totais</td>
<td>mg/L</td>
<td></td>
<td>105</td>
<td>56</td>
<td>124</td>
<td>134</td>
<td>216</td>
<td>224</td>
</tr>
<tr>
<td>Oxigênio dissolvido - campo</td>
<td>mg OD/L</td>
<td></td>
<td>3,42</td>
<td>7,56</td>
<td>4,48</td>
<td>5,64</td>
<td>3</td>
<td>4,39</td>
</tr>
<tr>
<td>DBO</td>
<td>≤ 5,0 mg DBO/L</td>
<td></td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.Nutrientes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogênio total</td>
<td>mg N/L</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Nitrogênio amoniacal</td>
<td>mg N-NH₃/L</td>
<td></td>
<td><0,4</td>
<td><0,4</td>
<td><0,4</td>
<td><0,4</td>
<td>6</td>
<td>5,4</td>
</tr>
<tr>
<td>Nitrogênio total kjeldahl</td>
<td>mg N/L</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>7,4</td>
<td>7,1</td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N-NO₂/L</td>
<td></td>
<td><0,02</td>
<td><0,02</td>
<td><0,02</td>
<td><0,02</td>
<td>0,08</td>
<td>0,09</td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N-NO₃/L</td>
<td></td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td>0,5</td>
<td>1,7</td>
</tr>
<tr>
<td>Ortofosfato solúvel</td>
<td>mg PO₄/L</td>
<td></td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
</tr>
<tr>
<td>Fósforo total</td>
<td>≤ 0,03 (Lêntico)</td>
<td>mg P/L</td>
<td><0,02</td>
<td><0,02</td>
<td><0,02</td>
<td><0,02</td>
<td>0,08</td>
<td>0,1</td>
</tr>
<tr>
<td>3.Biológicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliformes termotolerantes</td>
<td>NMP/100mL</td>
<td></td>
<td>20</td>
<td>20</td>
<td>45</td>
<td>78</td>
<td>5400</td>
<td>4500</td>
</tr>
<tr>
<td>Clorofila a</td>
<td>≤ 30 µg/L</td>
<td></td>
<td>1,47</td>
<td>2,17</td>
<td>0,76</td>
<td>2,5</td>
<td>21,2</td>
<td>18,3</td>
</tr>
</tbody>
</table>

Nota: Os valores em vermelho indicam violação ao padrão estabelecido pela Resolução CONAMA 357/05 para águas doces, classe 2.
Tabela 2: Resultados das amostras coletada nas lagoas de Salvador

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Padrões da Resolução CONAMA nº. 357/05</th>
<th>Unidade</th>
<th>Lagoa CHESF</th>
<th>Lagoa do CAB I</th>
<th>Lagoa do CAB II</th>
<th>Lagoa Jorge Amado</th>
<th>Lagoa Parque Tecnológico</th>
<th>Lagoa Posto 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiente</td>
<td>Lêntico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Físico-químicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condutividade</td>
<td>µmhos/cm</td>
<td>91,6</td>
<td>123,2</td>
<td>165,2</td>
<td>146,5</td>
<td>173,2</td>
<td>161,1</td>
<td></td>
</tr>
<tr>
<td>Salinidade</td>
<td>%/oo</td>
<td>0,04</td>
<td>0,06</td>
<td>0,04</td>
<td>0,07</td>
<td>0,08</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>Temperatura - campo</td>
<td>ºC</td>
<td>27,7</td>
<td>25,5</td>
<td>26,9</td>
<td>28,6</td>
<td>27,2</td>
<td>28,9</td>
<td></td>
</tr>
<tr>
<td>pH - campo</td>
<td></td>
<td>6,0 a 9,0</td>
<td>6,61</td>
<td>6,01</td>
<td>6,47</td>
<td>7,28</td>
<td>6,59</td>
<td>7,12</td>
</tr>
<tr>
<td>Turbidez</td>
<td>NTU</td>
<td>1,52</td>
<td>15,29</td>
<td>13,4</td>
<td>6,45</td>
<td>5</td>
<td>7,56</td>
<td></td>
</tr>
<tr>
<td>Sólidos dissolvidos totais</td>
<td>mg/L</td>
<td>52</td>
<td>72</td>
<td>108</td>
<td>136</td>
<td>94</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Sólidos totais</td>
<td>mg/L</td>
<td>58</td>
<td>78</td>
<td>110</td>
<td>140</td>
<td>108</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Oxigênio dissolvido - campo</td>
<td>mg OD/L</td>
<td>7,37</td>
<td>1,41</td>
<td>9,51</td>
<td>9,5</td>
<td>5,45</td>
<td>6,67</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBO</td>
<td>mg DBO/L</td>
<td><2</td>
<td>9</td>
<td><2</td>
<td>5</td>
<td><2</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>2. Nutrientes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogênio total</td>
<td>mg N/L</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Nitrogênio amoniacal</td>
<td>mg N-NH₃/L</td>
<td><0,4</td>
<td><0,4</td>
<td>1,4</td>
<td><0,4</td>
<td><0,4</td>
<td><0,4</td>
<td></td>
</tr>
<tr>
<td>Nitrogênio total kjeldahl</td>
<td>mg N/L</td>
<td><1</td>
<td><1</td>
<td>2,4</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N-NO₂/L</td>
<td><0,02</td>
<td><0,02</td>
<td>0,03</td>
<td><0,02</td>
<td><0,02</td>
<td><0,02</td>
<td><0,02</td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N-NO₃/L</td>
<td>0,3</td>
<td>0,2</td>
<td>1,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Ortofosfato solúvel</td>
<td>mg PO₄/L</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td>0,05</td>
<td><0,04</td>
<td>0,04</td>
<td><0,04</td>
</tr>
<tr>
<td>Fósforo total</td>
<td>mg P/L</td>
<td><0,02</td>
<td>0,08</td>
<td>0,06</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
<td><0,02</td>
</tr>
<tr>
<td>3. Biológicos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliformes termotolerantes</td>
<td>NMP/100mL</td>
<td>45</td>
<td>1100</td>
<td>170</td>
<td>170</td>
<td>130</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Clorofila a</td>
<td>µg/L</td>
<td>2,23</td>
<td>16,7</td>
<td>32,9</td>
<td>36,3</td>
<td>2,28</td>
<td>5,76</td>
<td></td>
</tr>
</tbody>
</table>
| **Nota:** Os valores em vermelho indicam violação ao padrão estabelecido pela Resolução CONAMA 357/05 para águas doces, classe 2.
Tabela 3: Resultados das amostras coletadas nas lagoas de Salvador.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Padrões da Resolução CONAMA nº. 357/05</th>
<th>Unidade</th>
<th>Lagoas Urbanas de Salvador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Águas doces, classe 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagoa do Paraíso</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagoa Shopping Paralela I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lagoa Shopping Paralela II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dique de Campinas I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dique do Tororo 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dique do Tororo 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiente</td>
<td>Lêntico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Físico-químicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condutividade</td>
<td>µmhos/cm</td>
<td>285,1</td>
<td>116,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>259,9</td>
<td>521,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>521,9</td>
<td>358,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>358,3</td>
<td>356,2</td>
</tr>
<tr>
<td>Salinidade</td>
<td>%ºc</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Temperatura - campo</td>
<td>ºC</td>
<td>28,4</td>
<td>27,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27,4</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28</td>
<td>27,5</td>
</tr>
<tr>
<td>pH - campo</td>
<td>6,0 a 9,0</td>
<td>7,11</td>
<td>6,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,53</td>
<td>7,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,7</td>
<td>8,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,12</td>
<td>8,23</td>
</tr>
<tr>
<td>Turbidez</td>
<td>≤ 100,0</td>
<td>NTU</td>
<td>24,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,87</td>
<td>2,88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,88</td>
<td>19,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19,79</td>
<td>5,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,67</td>
<td>6,73</td>
</tr>
<tr>
<td>Sólidos dissolvidos totais</td>
<td>≤ 500 mg/L</td>
<td>160</td>
<td><20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>142</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td></td>
<td>166</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>206</td>
<td>166</td>
</tr>
<tr>
<td>Sólidos totais</td>
<td>mg/L</td>
<td>220</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>166</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>216</td>
<td>221</td>
</tr>
<tr>
<td>Oxigênio dissolvido - campo</td>
<td>≥ 5,0 mg OD/L</td>
<td>10,89</td>
<td>5,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,11</td>
<td>10,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,12</td>
<td>9,49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9,49</td>
<td>9,44</td>
</tr>
<tr>
<td>DBO</td>
<td>≤ 5,0 mg DBO/L</td>
<td>10</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td></td>
<td><2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2. Nutrientes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogênio total</td>
<td>mg N/L</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nitrogênio amoniaco</td>
<td>≤ 3,7 mg/L N, para pH ≤ 7,5</td>
<td>1,3</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>≤ 2,0 mg/L N, para 7,5 < pH ≤ 8,0</td>
<td><0,4</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>≤ 1,0 mg/L N, para 8,0 < pH ≤ 8,5</td>
<td>2,9</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>≤ 0,5 mg/L N, para pH > 8,5</td>
<td><0,4</td>
<td><0,4</td>
</tr>
<tr>
<td>Nitrogênio total kjedahl</td>
<td>mg N/L</td>
<td>1,5</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N-NO₂/L</td>
<td>0,02</td>
<td><0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,02</td>
<td><0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,05</td>
<td>0,04</td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>≤ 10 mg N-NO₂/L</td>
<td>0,3</td>
<td><0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,1</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Ortotetra de solúvel</td>
<td>mg PO₄/L</td>
<td><0,04</td>
<td><0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,04</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,05</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,04</td>
<td>0,04</td>
</tr>
<tr>
<td>Fósforo total</td>
<td>≤ 0,03 (Lêntico)</td>
<td>0,07</td>
<td><0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0,02</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td>3. Biológicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliformes termotolerantes</td>
<td>NMP/100mL</td>
<td>>16000</td>
<td><18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>280</td>
<td>16000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16000</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Chlorofila a</td>
<td>≤ 30 µg/L</td>
<td>101</td>
<td>1,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,25</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>195</td>
<td>59,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59,9</td>
<td>24,5</td>
</tr>
</tbody>
</table>

Nota: Os valores em vermelho indicam violação ao padrão estabelecido pela Resolução CONAMA 357/05 para águas doces, classe 2.
Tabela 4: Resultados das amostras coletada nas lagoas de Salvador.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Padrões da Resolução CONAMA nº. 357/05</th>
<th>Unidade</th>
<th>Lagoas Urbanas de Salvador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Águas doces, classe 2</td>
<td>Lagoa do Urubu</td>
<td>Lagoa dos Patos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lagoa dos Macacos</td>
<td></td>
</tr>
<tr>
<td>Ambiente</td>
<td></td>
<td>Lântico</td>
<td></td>
</tr>
<tr>
<td>1. Físico-químicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condutividade</td>
<td>µmhos/cm</td>
<td>350,9</td>
<td>416,7</td>
</tr>
<tr>
<td>Salinidade</td>
<td>%</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Temperatura - campo</td>
<td>ºC</td>
<td>28,5</td>
<td>27,4</td>
</tr>
<tr>
<td>pH - campo</td>
<td></td>
<td>7,66</td>
<td>6,95</td>
</tr>
<tr>
<td>Turbidez</td>
<td>≤ 100,0 NTU</td>
<td>12,98</td>
<td>8,34</td>
</tr>
<tr>
<td>Sólidos dissolvidos totais</td>
<td>≤ 500 mg/L</td>
<td>150</td>
<td>218</td>
</tr>
<tr>
<td>Sólidos totais</td>
<td>mg/L</td>
<td>228</td>
<td>238</td>
</tr>
<tr>
<td>Oxigênio dissolvido - campo</td>
<td>≥ 5,0 mg OD/L</td>
<td>9,97</td>
<td>4,63</td>
</tr>
<tr>
<td>DBO</td>
<td>≤ 5,0 mg DBO/L</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2. Nutrientes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogênio total</td>
<td>mg N/L</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>Nitrogênio amoniacal</td>
<td>mg N–NH₃/L</td>
<td><0,4</td>
<td><0,4</td>
</tr>
<tr>
<td>Nitrogênio total kjedahl</td>
<td>mg N/L</td>
<td>3,5</td>
<td><1</td>
</tr>
<tr>
<td>Nitrogênio nitrato</td>
<td>mg N–NO₂/L</td>
<td><0,02</td>
<td><0,02</td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N–NO₃/L</td>
<td>0,3</td>
<td><0,1</td>
</tr>
<tr>
<td>Ortofosfato solúvel</td>
<td>mg PO₄/L</td>
<td><0,04</td>
<td><0,04</td>
</tr>
<tr>
<td>Fósforo total</td>
<td>mg P/L</td>
<td>0,08</td>
<td>0,05</td>
</tr>
<tr>
<td>3. Biológicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliformes termotolerantes</td>
<td>NMP/100mL</td>
<td>>16000</td>
<td>490</td>
</tr>
<tr>
<td>Clorofila a</td>
<td>µg/L</td>
<td>49,8</td>
<td>30,7</td>
</tr>
</tbody>
</table>

Nota: Os valores em vermelho indicam violação ao padrão estabelecido pela Resolução CONAMA 357/05 para águas doces, classe 2.
Tabela 5: Resultados das amostras coletadas nas lagoas de Salvador.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Padrões da Resolução CONAMA nº. 357/05</th>
<th>Ambiente</th>
<th>Lagoas Urbanas de Salvador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lêntico</td>
<td>Lagoa do Flamengo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Águas doces, classe 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Físico-químicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condutividade</td>
<td>µmhos/cm</td>
<td>183,2</td>
<td>229,9</td>
</tr>
<tr>
<td>Salinidade</td>
<td>%</td>
<td>0,08</td>
<td>0,2</td>
</tr>
<tr>
<td>Temperatura - campo</td>
<td>ºC</td>
<td>27,6</td>
<td>27</td>
</tr>
<tr>
<td>pH - campo</td>
<td></td>
<td>6,0 a 9,0</td>
<td>6,72</td>
</tr>
<tr>
<td>Turbidez</td>
<td>NTU</td>
<td>1,61</td>
<td>1,15</td>
</tr>
<tr>
<td>Sólidos dissolvidos totais</td>
<td>mg/L</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Sólidos totais</td>
<td>mg/L</td>
<td>128</td>
<td>132</td>
</tr>
<tr>
<td>Oxigênio dissolvido - campo</td>
<td>mg O₂/L</td>
<td>6,51</td>
<td>8,12</td>
</tr>
<tr>
<td>DBO</td>
<td>≤ 5,0 mg DBO/L</td>
<td>≤ 2</td>
<td>≤ 2</td>
</tr>
<tr>
<td>2. Nutrientes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogênio total</td>
<td>mg N/L</td>
<td>2</td>
<td><1</td>
</tr>
<tr>
<td>Nitrogênio amoniacal</td>
<td>mg N-NH₃/L</td>
<td>1,5</td>
<td><0,4</td>
</tr>
<tr>
<td>Nitrogênio total kjedahl</td>
<td>mg N/L</td>
<td>1,5</td>
<td><1</td>
</tr>
<tr>
<td>Nitrogênio nitrato</td>
<td>mg N-NO₂⁻/L</td>
<td><0,02</td>
<td><0,02</td>
</tr>
<tr>
<td>Nitrogênio nitrito</td>
<td>mg N-NO₃⁻/L</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Ortofosfato solúvel</td>
<td>mg PO₄³⁻/L</td>
<td>0,04</td>
<td><0,04</td>
</tr>
<tr>
<td>Fósforo total</td>
<td>mg P/L</td>
<td>0,02</td>
<td><0,02</td>
</tr>
<tr>
<td>3. Biológicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coliformes termotolerantes</td>
<td>NMP/100mL</td>
<td><18</td>
<td>45</td>
</tr>
<tr>
<td>Clorofila a</td>
<td>µg/L</td>
<td>1,52</td>
<td>2,93</td>
</tr>
</tbody>
</table>

Notas:
- Os valores em vermelho indicam violação ao padrão estabelecido pela Resolução CONAMA 357/05 para águas doces, classe 2.
A condutividade é a expressão numérica da capacidade da água conduzir corrente elétrica, porém, não discrimina os íons que se encontram existentes na mesma. Além disso, é indicativo de mudança na concentração mineral da água. Quanto maior for à quantidade de íons dissolvidos na água maior será sua condutividade elétrica (TUNDISI et al., 1995). Todavia, altos valores de condutividade podem ser indicativos de características corrosivas da água e de possíveis impactos ambientais, que por ventura possam ocorrer devido ao lançamento de efluentes domésticos, industriais e resíduos de mineração, entre outros. Geralmente níveis maiores que 100 µS/cm (ou 100 µmhos/cm) pode ser indicativo de ambientes impactados. A Resolução CONAMA 357/05 não apresenta um valor de referência para este parâmetro. A maioria das lagoas analisadas apresentou valores acima de 100 µS/cm.

A temperatura da água varia de acordo com o clima da região. Corpos d’água naturais apresentam variações diárias, assim como estratificação vertical. A temperatura superficial é influenciada por fatores como latitude, altitude, estação do ano, período do dia, taxa de fluxo e profundidade. Esse parâmetro é responsável pelo retardamento (em baixa temperatura) ou aceleração (em alta temperatura) da atividade biológica, pela absorção de oxigênio e precipitação de compostos. Quando se encontra ligeiramente elevada, causa redução da solubilidade dos gases como, por exemplo, do oxigênio, além de aumentar a taxa de transferência de gases, o que pode gerar liberação de gases com odores desagradáveis. A temperatura menor registrada foi de 25,5 °C na Lagoa do CAB I e a maior de 29° C na lagoa do Abaeté.

A turbidez é a mensuração da capacidade da água em dispersar radiação, causada pela dispersão dos raios luminosos devido à presença de partículas em suspensão: silte, argila, coloide, matéria orgânica, fitoplâncton, etc., podendo limitar a penetração de raios solares. Tal fato ocasiona limitação nas funções fotossintéticas que, por sua vez, reduz a reposição do oxigênio dissolvido para os ecossistemas aquáticos. Todos
os pontos amostrados apresentaram valor de turbidez abaixo do limite estabelecido pela Resolução CONAMA nº 357/05.

O oxigênio dissolvido (OD) é reconhecido como o parâmetro mais importante para expressar a qualidade de um corpo d’água por ser essencial para a sobrevivência da vida aquática. É de extrema importância para a manutenção de processos de autodepuração em sistemas aquáticos naturais. O valor mensurado para este parâmetro obteve valores abaixo do valor de referência da Resolução CONAMA 357/05 nas lagoas: Alphaville, Orlando Gomes, Pituaçu no ponto 1 e 2, CAB I, Vale Encantado, Patos e Vitória. Baixos valores ou anoxia dos corpos d’água estão relacionados a despejos de substâncias orgânicas, como efluentes domésticos e alguns resíduos industriais. O OD pode ser utilizado como indicador primordial dos efeitos causados por estes despejos. As lagoas do Paraíso, Urubu, Paixão, dique de Campinas e dique do Tororó no ponto 1 e 2 apresentaram valores elevados, isso pode ser atribuído a grande atividade fotossintética produzidas pelas algas.

A DBO é utilizada para mensurar a quantidade de oxigênio necessário para oxidar matéria orgânica por decomposição microbiana aeróbia para uma forma inorgânica estável em uma determinada amostra. Esta análise mede a quantidade de oxigênio consumida na respiração e oxidação da matéria orgânica à temperatura de 20ºC em 5 dias. Em termos gerais, o resultado da DBO₅.₂₀ fornece uma indicação do teor de matéria orgânica biodegradável na amostra. Os maiores aumentos em termos deste parâmetro, num corpo d’água, são provocados por despejos de origem predominantemente orgânica. A presença de um alto teor de matéria orgânica pode induzir a anoxia total na água, provocando o desaparecimento de peixes e outras formas de vida aquática (CETESB, 2008). Os resultados de DBO obtidos nas coletas efetuadas em algumas das lagoas demonstraram que as lagoas: da Vitória, Pituaçu ponto 1 e 2, CAB I, Paraíso, dique de Campinas, Tororó no ponto 2 e represa do Cascão, obtiveram valores acima do limite estabelecido pela CONAMA nº 357/05. Esses valores altos podem indicar a presença de poluição proveniente de fontes pontuais ou difusas de origem doméstica ou industrial. Considerando que a lagoa da Vitória encontra-se em área preservada, o valor de DBO medido pode ser atribuído a condições naturais de produção de matéria orgânica pela biota aquática ou a ressuspensão do sedimento que pode contribuir internamente como fonte de matéria
orgânica, ou seja, fontes autóctones, como, decomposição de algas, peixes, invertebrados, restos de macrófitas ou fitoplâncton, dentro do sistema interno da referida lagoa.

O fósforo total trata-se de um nutriente essencial para os organismos vivos, podendo estar presente nos corpos hídricos na forma dissolvida e particulada. É essencial para o crescimento de algas, porém, quando em altas concentrações, favorece o processo de eutrofização. Este parâmetro apresentou-se acima do limite estabelecido pela CONAMA nº 357/05 nas lagoas: Pituaçu nos dois pontos, CAB I, CAB II, Paraíso, Urubu, Patos, Frades, Cascal, Abaeté no ponto 1, Paixão, dique de Campinas e dique Tororó no ponto 1 e 2. Essa violação pode estar vinculada ao lançamento de efluentes domésticos.

Segundo Esteves (1998), toda forma de fósforo presente em águas naturais encontram-se sob a forma de fosfatos. Do ponto de vista limnológico, todas as frações de fosfato são importantes, contudo, o ortofosfato (PO$_4^{3-}$) solúvel é a fração que possui maior relevância, visto que é a forma de fósforo mais prontamente assimilável por organismos aquáticos e plantas (SAWYER et al., 1994). Por tratar-se da forma fosfatada de primordial importância ao metabolismo dos vegetais aquáticos as concentrações de ortofosfato na água podem ditar as condições de estrutura das comunidades planctônicas. Possivelmente, a dinâmica da temperatura nos corpos d’água avaliados tenha aumentado o metabolismo dos organismos fazendo com que o ortofosfato fosse assimilado mais rapidamente e incorporado a sua biomassa, com isso a concentração desse parâmetro se apresentou em concentrações muito baixas (ESTEVES, 2011). Com isso, todos os pontos amostrados apresentaram valor estável em relação ao parâmetro ortofosfato solúvel.

O nitrogênio pode estar presente na água em diversas formas moleculares inorgânicas como, amoniaca, nítrito, nitrato e sob a forma orgânica. É indispensável para crescimento de algas. A presença desse parâmetro é mais significativa em ambientes lênticos ou em ambientes lóticos que alimentam lênticos. Além disso, a determinação da forma predominante do nitrogênio pode fornecer indicações sobre o estágio da poluição eventualmente ocasionada por algum lançamento de efluentes domésticos. Se a poluição for recente, o nitrogênio estará na forma de nitrogênio orgânico ou amoniacaal e se for antiga na forma de nitrato e nitrato, esse em concentrações
reduzidas. O Nitrogênio Total Kjeldahl (NTK) é um método que engloba o nitrogênio orgânico e amoniacal, este parâmetro é de suma importância para avaliação da qualidade da água, pois o mesmo é a forma predominante do nitrogênio nos efluentes domésticos brutos (SPERLING, 2005). Altas concentrações de compostos da série do nitrogênio podem ser indicativas de poluição por matéria orgânica. Vale ressaltar que quando o nitrogênio é descarregado nas águas naturais juntamente com o fósforo e outros nutrientes presentes nos despejos antrópicos, favorecem o enriquecimento de nutrientes no meio e possibilita o crescimento em maior extensão dos seres vivos que os utilizam, especialmente as algas, acelerando dessa forma, o processo de eutrofização. Foram detectadas concentrações elevadas de nitrogênio amoniacal, apresentando valores que excederam o limite estabelecido pela resolução CONAMA nº 357/05 na lagoa de Pituaçu nos dois pontos coletados e no dique de Campinas. O dique de Campinas também apresentou valores altos de nitrato, violando também o limite estabelecido pela Resolução supracitada. As lagoas: Alphaville, FTC, Orlando Gomes, Costa Verde, Pituaçu nos dois pontos coletados, CAB II, Paraíso, Dique de Campinas, Urubu, Flamengo, Vitória e Abaeté Catú, apresentaram valores altos de nitrogênio total e NTK. Quando há valores de NTK próximos aos encontrados em nitrogênio total, indica que possivelmente há uma maior fração de nitrogênio total, ou seja, na verdade existe uma maior biodisponibilidade de nitrogênio kjeldahl na coluna d’água. O dique do Tororó nos dois pontos apresentaram valores elevados de nitrogênio total.

A clorofila A é um pigmento fotosintético, além dos carotenóides e ficobilinas presente em todos os organismos fitoplanctônicos algas e cianobactérias. A clorofila A é a forma mais comum das clorofilas e é considerada como principal variável indicadora de estado trófico dos ambientes aquáticos (CETESB, 2008). O excesso deste parâmetro pode acarretar alterações na qualidade da água como o aumento da matéria orgânica particulada e substâncias orgânicas dissolvidas que agregam cor e sabor na água, entre outros (DI BERNARDO, 1995 Apud OLIVEIRA et al., 2012). As lagoas: CAB II, Jorge Amado, Paraíso, Urubu, Patos, Frades, Paixão, dique de Campinas e dique do Tororó nos dois pontos, apresentaram valores acima de 30µg/L para o parâmetro clorofila a, violando o limite padrão da Resolução do CONAMA 357/05.
Os coliformes termotolerantes são indicadores de uma possível existência de microorganismos patogênicos, responsáveis pela transmissão de doenças de veiculação hídrica, tais como: febre tifoide, febre paratifoide, disenteria bacilar e cólera na água. Representam uma grande variedade de microrganismos que inclui os gêneros *Klebsiella, Escherichia, Serratia, Erwenia e Enterobactéria* que habitam o intestino dos animais de sangue quente (cavalo, porco, cachorro, seres humanos, entre outros). Podem ser encontrados em águas com alta quantidade de matéria orgânica, em solo e material vegetal que está processo de decomposição, sem necessariamente haver contaminação fecal. As lagoas: Pituaçu nos dois pontos, CAB I, Paraíso, Urubu, Frades, Abaeté no segundo ponto e o dique de Campinas e Tororó nos dois pontos apresentaram altos valores para coliformes termotolerantes. Os altos valores e a presença desse indicador patógeno nos corpos d’água supracitados podem indicar despejo de efluentes domésticos.

A quantidade de sólidos suspensos nas águas é de natureza sazonal variando muito do período seco para o período chuvoso, dependendo, principalmente, do tipo do solo, da intensidade das chuvas, do tipo de uso e ocupação da bacia hidrográfica, e do tipo de cobertura vegetal. A resolução CONANA nº 357/05 não estabelece um valor padrão pra este parâmetro, sendo ele importante no controle de poluição das águas naturais e nos estudos de caracterização dos efluentes sanitários e esgotos sanitários. Nenhuma das lagoas avaliadas apresentaram altos valores para este parâmetro.
5.2. PERFIL VERTICAL DO OD

Figura 79: Perfil de Oxigênio Dissolvido na Lagoa do Urubu.

Figura 80: Perfil de Oxigênio Dissolvido no Dique de Campinas.

Figura 81: Perfil de Oxigênio Dissolvido da lagoa Abaetê Catu.

Figura 82: Perfil de Oxigênio Dissolvido da lagoa da Paixão.

Figura 83: Perfil de Oxigênio Dissolvido da Barragem de Ipitanga I.

Figura 84: Perfil de Oxigênio Dissolvido da Lagoa da Vitória.
Figura 85: Perfil de Oxigênio Dissolvido da Lagoa do Flamengo.

Figura 86: Perfil de Oxigênio Dissolvido da Lagoa do Abaeté 1.

Figura 87: Perfil de Oxigênio Dissolvido da Lagoa do Abaeté 2.

Figura 88: Perfil de Oxigênio Dissolvido da Lagoa Orlando Gomes.

Figura 89: Perfil de Oxigênio Dissolvido da Lagoa Costa Verde.

Figura 90: Perfil de Oxigênio Dissolvido da Lagoa do Parque Tecnológico.
Figura 91: Perfil de Oxigênio Dissolvido da Lagoa da Jorge Amado.

Figura 92: Perfil de Oxigênio Dissolvido da Lagoa do Shop Paralela.

Figura 93: Perfil de Oxigênio Dissolvido da Lagoa do Vale Encantado.

Figura 94: Perfil de Oxigênio Dissolvido da Lagoa da FTC.

Figura 95: Perfil de Oxigênio Dissolvido da Lagoa Alphaville.

Figura 96: Perfil de Oxigênio Dissolvido da Lagoa do Paraíso.
Figura 97: Perfil de Oxigênio Dissolvido da Lagoa Posto 1.

Figura 98: Perfil de Oxigênio Dissolvido da Lagoa dos Frades.

Figura 99: Perfil de Oxigênio Dissolvido da Lagoa dos Patos.

Figura 100: Perfil de Oxigênio Dissolvido do Dique do Tororo 1.

Figura 101: Perfil de Oxigênio Dissolvido do Dique do Tororo 2.

Figura 102: Perfil de Oxigênio Dissolvido Lagoa de Pituaçu 1.
Em geral, as lagoas apresentam na grande maioria dos casos, fortes déficits de Oxigênio na coluna d’água especialmente na sua camada inferior.
Já a elevação do oxigênio no epilímno resulta no aumento da taxa fotosintética do fitoplâncton e da redução de matéria orgânica (grande parte já foi sedimentada, precipitada, ou decomposta).
Nos trechos estudados na lagoa do Parque Tecnológico, Flamengo, Orlando Gomes, FTC, CAB II, Posto 1, Patos, Vale encantado e Chesf, a concentração de Oxigênio Dissolvido manteve-se em toda a coluna d’água. A Barragem de Ipitanga I e Abaeté no ponto 1 apresentaram valores de OD >9 mg OD/L na camada superficial e baixas concentrações de OD nas demais camadas.
As lagoas do Urubu, Paixão, Paraíso e Dique de Campinas apresentaram altas concentrações de OD no epilímnio e baixa concentração de OD no metalímnio e anoxia no hipolímnio.
Já as lagoas do Abaeté no ponto 1, Orlando Gomes, Pituaçu 1 e 2, Vale Encantado e Patos, apresentaram valores de OD abaixo de 5 mg OD/L em toda coluna d’água.
As lagoas da Vitória e Frades, apresentaram concentrações de OD<5 mg OD/L no epilimnio e metalimnio e anoxia no hipolimnio.

O dique do Tororó nos dois pontos avaliados apresentou altas concentrações de OD nas camadas superficiais e na camada mais profunda da sua coluna d’água apresentou baixa concentração de oxigênio. Este resultado demonstra alta atividade fotossintética no epilimnio e uma alta atividade bacteriana no hipolimnio, onde os processos biológicos nessa camada passam a ser mais importantes, produzindo grande quantidade de compostos redutores, que para sua oxidação consomem grandes quantidades de oxigênio, causando anoxia nas camadas inferiores da coluna d’água.

5.3. FITOPLÂNCTON

Fitoplâncton é o conjunto de organismos microscópicos fotossintetizantes (que inclui as algas e cianobactérias) adaptados a passar parte ou todo o tempo da sua vida em suspensão em águas oceânicas ou continentais. É um dos principais produtores primários dos ecossistemas aquáticos continentais e é de suma importância a compreensão das alterações que ocorram na base da cadeia alimentar, pois estas repercutem nos demais níveis tróficos.

O fitoplâncton apresenta ciclos de vida curtos (4/5 dias) e obtém os nutrientes necessários para o seu desenvolvimento na coluna d’água, sendo o indutor e indicador biológico por apresentar elevada sensibilidade a alterações nas condições ambientais e de pressões associadas ao processo de eutrofização no corpo hídrico, registrando melhor as variações da qualidade da água. (Hutchinson, 1967; Reynolds, 2006).

Foram identificados no dique do Tororó, 32 táxons distribuídos em 5 (cinco) divisões: Cyanophyta, Chlorophyta, Bacillariophyta, Chrysophyta e Cryptophyta. Foi observada uma maior representatividade das Cyanophyta (86,23%), seguidas das Chlorophyta (9,92%), Cryptophyta (1,88%), Bacillariophyta (1,46%), e 0,53% Chrysophyta (tabela 6). Nas amostras qualitativas e quantitativas, as Cyanophyta se destacaram como a mais abundante (86,5%).

Na lagoa de Pituaçu foram identificadas 18 táxons distribuídos em 4 (quatro) divisões: Cyanophyta, Chlorophyta, Bacillariophyta e Cryptophyta. Houve uma maior representatividade das Cyanophyta (66,56%), seguidas das Chlorophyta, Bacillariophyta e Cryptophyta (tabela 6). Assim como no dique do Tororó, as Cyanophyta se destacaram como a mais abundante com 66,56%.
Já na lagoa do Abaeté foram identificados 28 táxons distribuídos em 5 (cinco) divisões fitoplanctônica: Cyanophyta, Chlorophyta, Bacillariophyta, Chrysophyta e Cryptophyta. Assim como nos ambientes lênticos avaliados, as Cyanophytas se destacaram como a mais abundante com 60,26%.

Tabela 6: Resultados qualiquantitativo da análise de fitoplâncton.

<table>
<thead>
<tr>
<th>Divisões</th>
<th>Dique do Tororó</th>
<th>Lagoa de Pituacu</th>
<th>Lagoa do Abaeté</th>
<th>Dique do Tororó</th>
<th>Lagoa de Pituacu</th>
<th>Lagoa do Abaeté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphanocapsa sp</td>
<td>30961</td>
<td>8805</td>
<td>785</td>
<td>30,52</td>
<td>40,99</td>
<td>33,69</td>
</tr>
<tr>
<td>Cylindrospermopsis sp</td>
<td>3466</td>
<td>N/A</td>
<td>N/A</td>
<td>3,42</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Limnothrix sp</td>
<td>14205</td>
<td>N/A</td>
<td>348</td>
<td>14</td>
<td>N/A</td>
<td>14,96</td>
</tr>
<tr>
<td>Merismopedia sp</td>
<td>30446</td>
<td>91</td>
<td>213</td>
<td>30,03</td>
<td>0,43</td>
<td>9,16</td>
</tr>
<tr>
<td>Microcystis sp</td>
<td>6550</td>
<td>5400</td>
<td>57</td>
<td>6,46</td>
<td>25,14</td>
<td>2,45</td>
</tr>
<tr>
<td>Planktontrix sp</td>
<td>1828</td>
<td>N/A</td>
<td>N/A</td>
<td>1,80</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>87476</td>
<td>14296</td>
<td>1403</td>
<td>86,23</td>
<td>66,56</td>
<td>60,26</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinastrum sp</td>
<td>N/A</td>
<td>N/A</td>
<td>51</td>
<td>N/A</td>
<td>N/A</td>
<td>2,21</td>
</tr>
<tr>
<td>Ankistrodesmus falcatus</td>
<td>N/A</td>
<td>N/A</td>
<td>17</td>
<td>N/A</td>
<td>N/A</td>
<td>0,74</td>
</tr>
<tr>
<td>Chlamydomonas sp</td>
<td>N/A</td>
<td>N/A</td>
<td>112</td>
<td>N/A</td>
<td>N/A</td>
<td>4,82</td>
</tr>
<tr>
<td>Closterium sp</td>
<td>114</td>
<td>19</td>
<td>11</td>
<td>0,11</td>
<td>0,09</td>
<td>0,49</td>
</tr>
<tr>
<td>Coelastrum sp</td>
<td>N/A</td>
<td>183</td>
<td>N/A</td>
<td>N/A</td>
<td>0,85</td>
<td>N/A</td>
</tr>
<tr>
<td>Coelastrum cambricum</td>
<td>1638</td>
<td>N/A</td>
<td>N/A</td>
<td>1,61</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Coelastrum sphaericum</td>
<td>457</td>
<td>N/A</td>
<td>N/A</td>
<td>0,45</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dictyosphaerium sp</td>
<td>152</td>
<td>N/A</td>
<td>72</td>
<td>0,15</td>
<td>N/A</td>
<td>3,11</td>
</tr>
<tr>
<td>Euastrum sp</td>
<td>76</td>
<td>N/A</td>
<td>N/A</td>
<td>0,08</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Franceia sp</td>
<td>114</td>
<td>11</td>
<td>N/A</td>
<td>0,11</td>
<td>0,05</td>
<td>N/A</td>
</tr>
<tr>
<td>Kirchneriella sp</td>
<td>N/A</td>
<td>N/A</td>
<td>147</td>
<td>N/A</td>
<td>N/A</td>
<td>6,3</td>
</tr>
<tr>
<td>Monoraphidium sp</td>
<td>N/A</td>
<td>8</td>
<td>27</td>
<td>N/A</td>
<td>0,04</td>
<td>1,14</td>
</tr>
<tr>
<td>Monoraphidium arcuatum</td>
<td>381</td>
<td>N/A</td>
<td>N/A</td>
<td>0,38</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Monoraphidium tortile</td>
<td>76</td>
<td>N/A</td>
<td>N/A</td>
<td>0,08</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nephrochalmys willeana</td>
<td>152</td>
<td>N/A</td>
<td>13</td>
<td>0,15</td>
<td>N/A</td>
<td>0,57</td>
</tr>
<tr>
<td>Oocystis sp</td>
<td>114</td>
<td>301</td>
<td>N/A</td>
<td>0,11</td>
<td>1,4</td>
<td>N/A</td>
</tr>
<tr>
<td>Pediastrum sp</td>
<td>609</td>
<td>N/A</td>
<td>N/A</td>
<td>0,60</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pediastrum duplex</td>
<td>N/A</td>
<td>N/A</td>
<td>15</td>
<td>N/A</td>
<td>N/A</td>
<td>0,65</td>
</tr>
<tr>
<td>Pediastrum tetras</td>
<td>N/A</td>
<td>N/A</td>
<td>8</td>
<td>N/A</td>
<td>N/A</td>
<td>0,33</td>
</tr>
<tr>
<td>Quadriruga pfitzeri</td>
<td>N/A</td>
<td>6249</td>
<td>103</td>
<td>N/A</td>
<td>29,09</td>
<td>4,42</td>
</tr>
<tr>
<td>Scenedesmus sp</td>
<td>1980</td>
<td>76</td>
<td>11</td>
<td>1,95</td>
<td>0,35</td>
<td>0,49</td>
</tr>
<tr>
<td>Scenedesmus arcuatus</td>
<td>N/A</td>
<td>30</td>
<td>N/A</td>
<td>N/A</td>
<td>0,14</td>
<td>N/A</td>
</tr>
<tr>
<td>Scenedesmus acuminatus</td>
<td>457</td>
<td>N/A</td>
<td>15</td>
<td>0,45</td>
<td>N/A</td>
<td>0,65</td>
</tr>
<tr>
<td>Especie</td>
<td>Número</td>
<td>Largura</td>
<td>Comprimento</td>
<td>Aspecto</td>
<td>N°/mL</td>
<td>N°/mL</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Scenedesmus ellipticus</td>
<td>1142</td>
<td>N/A</td>
<td>N/A</td>
<td>1,13</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Scenedesmus protuberans</td>
<td>1523</td>
<td>N/A</td>
<td>N/A</td>
<td>1,50</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Staurodesmus sp.</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>0,16</td>
</tr>
<tr>
<td>Tetraedrum sp.</td>
<td>1066</td>
<td>228</td>
<td>N/A</td>
<td>1,05</td>
<td>1,06</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>10051</td>
<td>7105</td>
<td>606</td>
<td>9,92</td>
<td>33,07</td>
<td>26,08</td>
</tr>
<tr>
<td>Bacillariophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclotella sp.</td>
<td>647</td>
<td>30</td>
<td>25</td>
<td>0,64</td>
<td>0,14</td>
<td>1,06</td>
</tr>
<tr>
<td>Discotella sp.</td>
<td>152</td>
<td>19</td>
<td>2</td>
<td>0,15</td>
<td>0,09</td>
<td>0,08</td>
</tr>
<tr>
<td>Eunotia</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>0,16</td>
</tr>
<tr>
<td>Fragilaria sp.</td>
<td>114</td>
<td>N/A</td>
<td>N/A</td>
<td>0,11</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Melosira sp.</td>
<td>267</td>
<td>N/A</td>
<td>63</td>
<td>0,26</td>
<td>N/A</td>
<td>2,70</td>
</tr>
<tr>
<td>Navicula sp.</td>
<td>190</td>
<td>4</td>
<td>25</td>
<td>0,19</td>
<td>0,02</td>
<td>1,06</td>
</tr>
<tr>
<td>Thalassiosira sp.</td>
<td>114</td>
<td>11</td>
<td>8</td>
<td>0,11</td>
<td>0,5</td>
<td>0,33</td>
</tr>
<tr>
<td>Total</td>
<td>1484</td>
<td>64</td>
<td>145</td>
<td>1,46</td>
<td>0,3</td>
<td>5,39</td>
</tr>
<tr>
<td>Chrysophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium sp.</td>
<td>N/A</td>
<td>N/A</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>0,16</td>
</tr>
<tr>
<td>Durinskia sp.</td>
<td>190</td>
<td>N/A</td>
<td>N/A</td>
<td>0,19</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Gymnodinium sp.</td>
<td>N/A</td>
<td>N/A</td>
<td>15</td>
<td>N/A</td>
<td>N/A</td>
<td>0,65</td>
</tr>
<tr>
<td>Peridinium sp.</td>
<td>343</td>
<td>N/A</td>
<td>N/A</td>
<td>0,34</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>533</td>
<td>N/A</td>
<td>19</td>
<td>0,53</td>
<td>N/A</td>
<td>0,81</td>
</tr>
<tr>
<td>Cryptophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptomonas sp.</td>
<td>1447</td>
<td>8</td>
<td>97</td>
<td>1,43</td>
<td>0,04</td>
<td>4,17</td>
</tr>
<tr>
<td>Rhodomonas sp.</td>
<td>457</td>
<td>8</td>
<td>76</td>
<td>0,45</td>
<td>0,04</td>
<td>3,27</td>
</tr>
<tr>
<td>Total</td>
<td>1904</td>
<td>16</td>
<td>173</td>
<td>1,88</td>
<td>0,08</td>
<td>7,44</td>
</tr>
</tbody>
</table>

Fonte: Adaptado pelo autor, 2015.

Em termos gerais, foi observado que o gênero *Aphanocapsa sp* foi bastante abundante em todas as lagoas avaliadas, o mesmo é recorrente em mananciais brasileiros e esta relacionado a ambientes eutróficos e oligotróficos. É uma das cyanobactéria tóxicas encontradas mais comumente nos corpos d’água no Brasil (ROSINI, 2010).
Os demais gêneros que também podem produzir toxinas e mostraram-se abundantes foram: *Microcystis sp* na lagoa de Pituaçu (25,14%) e com pequenos percentuais de abundância no dique do Tororo (6,46%) e na lagoa do Abaeté (2,45%), o gênero *Merismopedia sp* mostrou-se abundante no Dique do Tororo (30,03%) e *Limnothrix sp*, na lagoa do Abaeté (14,96%) e Dique do Tororo (14%). Já os gêneros *Cylindrospermopsis sp* e *Planktrotix sp* apresentaram percentuais pequenos de abundância no dique do Tororo ambos também são cyanobactérias que podem liberar cianotoxinas.

Vale salientar que, a divisão Chlorophyta apresentou-se com a maior diversidade de táxons e as cyanobactérias com a maior densidade de táxons em todas as lagoas.

5.4. AVALIAÇÃO DOS ÍNDICES

5.4.1. Índice de Qualidade da Água – IQA

Para a avaliação da qualidade dos corpos d’água foi utilizado o índice de qualidade da água – IQA (CETESB, 2007) e o índice de estado trófico- IET (LAMPARELLI, 2004).

As categorias de qualidade da água em função dos valores do IQA estão classificadas conforme mostra o Quadro 1.

<table>
<thead>
<tr>
<th>Ótimo</th>
<th>Bom</th>
<th>Regular</th>
<th>Ruim</th>
<th>Pessimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 < IQA ≤ 100</td>
<td>51 < IQA ≤ 79</td>
<td>36 < IQA ≤ 51</td>
<td>19 < IQA ≤ 36</td>
<td>IQA ≤ 19</td>
</tr>
</tbody>
</table>
Tabela 7: Categorias do IQA e os respectivos valores.

<table>
<thead>
<tr>
<th>Lagoas Urbanas de Salvador</th>
<th>Valor do IQA 2013.1</th>
<th>CLASSIFICAÇÃO DO IQA</th>
<th>Valor do IQA 2013.2</th>
<th>CLASSIFICAÇÃO DO IQA</th>
<th>Valor do IQA 2014</th>
<th>CLASSIFICAÇÃO DO IQA</th>
<th>Valor do IQA 2015</th>
<th>CLASSIFICAÇÃO DO IQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagoa de Alphaville</td>
<td>84</td>
<td>Ótimo</td>
<td>75</td>
<td>Bom</td>
<td>78</td>
<td>Bom</td>
<td>71</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa FTC</td>
<td>84</td>
<td>Ótimo</td>
<td>84</td>
<td>Ótimo</td>
<td>85</td>
<td>Ótimo</td>
<td>85</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Lagoa Orlando Gomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Lagoa do Costa Verde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Lagoa de Pituquã 1</td>
<td>75</td>
<td>Bom</td>
<td>70</td>
<td>Bom</td>
<td>81</td>
<td>Ótimo</td>
<td>51</td>
<td>Regular</td>
</tr>
<tr>
<td>Lagoa de Pituquã 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa de Chesf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Lagoa do CAB I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa do CAB II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa Jorge Amado</td>
<td>67</td>
<td>Bom</td>
<td>80</td>
<td>Ótimo</td>
<td>85</td>
<td>Ótimo</td>
<td>75</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoes Perque Tecnológico</td>
<td>70</td>
<td>Bom</td>
<td>70</td>
<td>Bom</td>
<td>83</td>
<td>Ótimo</td>
<td>74</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa Porto 1</td>
<td>78</td>
<td>Bom</td>
<td>83</td>
<td>Ótimo</td>
<td>68</td>
<td>Bom</td>
<td>75</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa do Paraíso</td>
<td>31</td>
<td>Ruim</td>
<td>43</td>
<td>Regular</td>
<td>62</td>
<td>Bom</td>
<td>55</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa Shopping Paralela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Lagoa Vele Encantado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>Bom</td>
</tr>
<tr>
<td>Dique de Campinas</td>
<td>32</td>
<td>Ruim</td>
<td>46</td>
<td>Regular</td>
<td>49</td>
<td>Regular</td>
<td>44</td>
<td>Regular</td>
</tr>
<tr>
<td>Dique do Tororó 1</td>
<td>57</td>
<td>Bom</td>
<td>56</td>
<td>Bom</td>
<td>70</td>
<td>Bom</td>
<td>68</td>
<td>Bom</td>
</tr>
<tr>
<td>Dique do Tororó 2</td>
<td>28</td>
<td>Ruim</td>
<td>52</td>
<td>Bom</td>
<td>56</td>
<td>Bom</td>
<td>68</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa do Urubu</td>
<td>48</td>
<td>Regular</td>
<td>62</td>
<td>Bom</td>
<td>61</td>
<td>Bom</td>
<td>66</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa dos Patos</td>
<td>39</td>
<td>Regular</td>
<td>48</td>
<td>Regular</td>
<td>49</td>
<td>Regular</td>
<td>59</td>
<td>Bom</td>
</tr>
<tr>
<td>Represa do Caracol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa da Vitória</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa dos Macacos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Lagoa do Flamengo</td>
<td>81</td>
<td>Ótimo</td>
<td>72</td>
<td>Bom</td>
<td>84</td>
<td>Ótimo</td>
<td>83</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Represa de Itacanga I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Lagoa Abaeté Catu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>Ótimo</td>
</tr>
<tr>
<td>Lagoa do Abaeté 1</td>
<td>59</td>
<td>Bom</td>
<td>59</td>
<td>Bom</td>
<td>71</td>
<td>Bom</td>
<td>76</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa do Abaeté 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>Bom</td>
</tr>
<tr>
<td>Lagoa da Paixão</td>
<td>57</td>
<td>Bom</td>
<td>57</td>
<td>Regular</td>
<td>50</td>
<td>Regular</td>
<td>70</td>
<td>Bom</td>
</tr>
</tbody>
</table>

Fonte: adaptado pelo autor, 2015.

A tabela 7 mostra as categorias e resultados do IQA das avaliações feitas nas lagoas de Salvador no período de 2013 a 2015 realizadas pelo INEMA.

No período de 2015, os resultados de IQA demonstraram que a maioria das lagoas avaliadas obtiveram resultados de qualidade da água classificadas como “BOM”. Já as lagoas FTC, Chesf, Shopping Paralela, Macacos, Flamengo, Abaeté Catu e a barragem de Ipitanga I, foram classificadas como “ÓTIMO”. Porém, as lagoas do CAB I, Vitória e o dique de Campinas, foram classificadas como “REGULAR”.

A figura 111 mostra o gráfico da porcentagem nas lagoas urbanas de Salvador em relação à qualidade das águas.

Figura 111: Gráfico da porcentagem de IQA das lagoas de Salvador.

Das lagoas avaliadas 63,3% foram classificadas como “BOM”, 23,3% classificadas como “ÓTIMO” e 13,4% classificadas como “REGULAR”. Os estudos ao longo do tempo mostram que algumas das lagoas de Salvador demonstram uma tendência de melhora no IQA.

5.4.2. Índice de Estado Trófico – IET

Os níveis de estado de trofia em função dos valores do IET adaptado por Lamparelli em 2004 estão classificadas conforme mostra o Quadro 2.

Quadro 2: Níveis de estado de trofia e os respectivos valores.

<table>
<thead>
<tr>
<th>Ultraoligotrófico</th>
<th>Oligotrófico</th>
<th>Mesotrófico</th>
<th>Eutrófico</th>
<th>Supereutrófico</th>
<th>Hipereutrófico</th>
</tr>
</thead>
<tbody>
<tr>
<td>IET≤47</td>
<td>47<IET≤52</td>
<td>52<IET≤59</td>
<td>59<IET≤63</td>
<td>63<IET≤67</td>
<td>IET>67</td>
</tr>
</tbody>
</table>

O Quadro 3 apresenta as classes de estado trófico e suas características principais de acordo com LAMPARELLI (2004).
Quadro 3: Características das classes de estado trófico.

<table>
<thead>
<tr>
<th>Classe de Estado Trófico</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraplano Trófico</td>
<td>Corpos d'água limpos, de produtividade muito baixa e concentrações desconsideráveis de nutrientes que não acarretam em prejuízos aos usos do água.</td>
</tr>
<tr>
<td>Oligotrófico</td>
<td>Corpos d'água limpos, de baixa produtividade, em que não ocorrem interferências indesejáveis sobre os usos da água, decorrentes da presença de nutrientes.</td>
</tr>
<tr>
<td>Mesotrófico</td>
<td>Corpos d'água com produtividade intermediária, com possíveis implicações sobre a qualidade da água, mas em níveis aceitáveis, na maioria dos casos.</td>
</tr>
<tr>
<td>Eutrófico</td>
<td>Corpos d'água com alta produtividade em relação às condições naturais, com redução da transparência, em geral atendidos por atividades antrópicas, nos quais ocorrem alterações indesejáveis na qualidade da água decorrentes do aumento da concentração de nutrientes e interferências nos seus múltiplos usos.</td>
</tr>
<tr>
<td>Supereutrófico</td>
<td>Corpos d'água com alta produtividade em relação às condições naturais, de baixa transparência, em geral atendidos por atividades antrópicas, nos quais ocorrem com frequência alterações indesejáveis na qualidade da água, como a ocorrência do episódico florações de algas, e interferências nos seus múltiplos usos.</td>
</tr>
<tr>
<td>Hiperesutrófico</td>
<td>Corpos d'água alicerçados significativamente pelas elevadas concentrações de matéria orgânica e nutrientes, com comprometimento acentuado nos seus usos, associado a episódicos florações de algas ou mortandades de peixes, com consequências indesejáveis para seus múltiplos usos, inclusive sobre as atividades pecuárias nas regiões ribeirinhas.</td>
</tr>
</tbody>
</table>

Fonte: Adaptado LAMPARELLI, 2014.

Na Tabela 8, encontram-se os valores obtidos no calculo do IET e os respectivos níveis de trofia nos ambientes lênticos urbanos avaliados durante o período de 2013 a 2014.
No período de 2015, os resultados de IET demonstraram que as lagoas de Alphaville, Orlando Gomes, Shopping Paralela, da Vitória, Macacos e Flamengo apresentaram baixo enriquecimento de nutrientes e foram classificadas como oligotróficas. As lagoas FTC, Costa Verde, Chesf, Parque Tecnológico, Posto 1, Vale Encantado, barragem de Ipitanga I, Abaeté Catu e Abaeté 2, apresentaram nível de produtividade intermediário de nutrientes e foram classificadas como mesotróficas.

Lagoa de Pituaçu 1 e 2, CAB I, CAB II, Jorge Amado, Dique do Tororó no ponto 2, Represa do Cascão e lagoa do Abaeté no ponto 2, foram classificadas como eutrófica. Já as lagoas: do Paraíso, Urubu, Frades, Paixão e Dique do Tororó no ponto 1, apresentaram altos níveis de enriquecimento nutrientes, sendo classificadas como supereutrófica. Dique de Campinas foi classificado como hipereutrófica, ou seja, com enriquecimento altíssimo de nutrientes. O IET tem a função de apresentar o nível de

Fonte: Adaptado pelo autor, 2015.
estado trófico relacionado com as atividades antrópicas, podendo contribuir para o planejamento, controle e conservação desses ambientes (BREZONIC, 1976 *Apud* GOMES *et al*., 2010; DUSSART, 1984 *Apud* GOMES *et al*., 2010).

As Figuras 112, 113, 114, 115 e 116 apresentam a variação dos valores do IET no período de 2013.1 a 2015.

Figura 112: Variação do IET das lagos de Salvador (2013.1 - 2015).

Figura 113: Variação do IET das lagos de Salvador (2013.1 - 2015).

Figura 114: Variação do IET das lagos de Salvador (2013.1 - 2015).

Figura 115: Variação do IET das lagos de Salvador (2013.1 - 2015).

Figura 116: Variação do IET das lagos de Salvador (2013.1 - 2015).
A Figura 117 mostra o gráfico da porcentagem referente ao nível de trofia das lagoas urbanas avaliadas nesse estudo.

<table>
<thead>
<tr>
<th>IET das lagoas de Salvador em 2015 (%)</th>
<th>Oligotrófico</th>
<th>Mesotrófico</th>
<th>Eutrófico</th>
<th>Supereutrófico</th>
<th>Hipereutrófico</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Adaptado pelo autor, 2015.

Das lagoas avaliadas, 20% foram classificadas com o nível de trofia “OLIGOTRÓFICO”, 30% classificadas como “MESOTRÓFICO”, 30% como “EUTRÓFICO”, 16,7% como “SUPEREUTRÓFICO” e 3,3% classificadas como “HIPEREUTRÓFICO”.

6. CONCLUSÃO

Através dos resultados obtidos na análise das águas dos ambientes lênticos urbanos de Salvador pode se concluir que a maioria das amostras coletadas apresentaram percentuais que violaram os limites máximos ou mínimos estabelecidos pela Resolução CONAMA nº 357/05 em relação a alguns parâmetros (OD, DBO, fósforo total, nitrogênio amoniacal, nitrogênio nitrito, clorofila a e pH). Além disso, foram verificados altos percentuais para os parâmetros de condutividade e coliformes termotolerantes na maioria das lagoas avaliadas.

Quanto ao fitoplâncton, foi observado que o gênero *Aphanocapsa sp* foi bastante abundante em todas as lagoas avaliadas, o mesmo é recorrente em mananciais brasileiros e está relacionado a ambientes eutróficos e oligotróficos.

A análise do IQA demonstrou de modo geral bons resultados, 86,6% das lagoas apresentaram qualidade da água classificada como “BOM” e “ÓTIMO”. Em relação aos
resultados obtidos no cálculo do IET pode-se concluir que em geral, os trechos avaliados no ano de 2015 apresentaram trofia entre moderado e alto nível de enriquecimento de nutrientes.

7. REFERÊNCIAS

